39 research outputs found

    Radio Frequency Identification (RFID) in health care: where are we? A scoping review

    Get PDF
    Purpose (RFID) is a technology that uses radio waves for data collection and transfer, so data is captured efficiently, automatically and in real time without human intervention. This technology, alone or in addition to other technologies has been considered as a possible solution to reduce problems that endanger public health or to improve its management. This scoping review aims to provide readers with an up-to-date picture of the use of this technology in health care settings. Methods This scoping review examines the state of RFID technology in the healthcare area for the period 2017-2022, specifically addressing RFID versatility and investigating how this technology can contribute to radically change the management of public health. The guidelines of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) have been followed. Literature reviews or surveys were excluded. Only articles describing technologies implemented on a real environment or on prototypes were included. Results The search returned 366 results. After screening, based on title and abstract, 58 articles were considered suitable for this work. 11 articles were reviewed because they met the qualifying requirements. The study of the selected articles highlighted six matters that can be profitably impacted by this technology Conclusion The selected papers show that this technology can improve patient safety by reducing medical errors, that can occur within operating rooms. It can also be the solution to overcome the problem of the black market in counterfeiting drugs, or as a prevention tool. Further research is needed, especially on data management, security, and privacy, given the sensitive nature of medical information

    Enhancing IoT Data Dependability through a Blockchain Mirror Model

    Get PDF
    The Internet of Things (IoT) is a remarkable data producer and these data may be used to prevent or detect security vulnerabilities and increase productivity by the adoption of statistical and Artificial Intelligence (AI) techniques. However, these desirable benefits are gained if data from IoT networks are dependablethis is where blockchain comes into play. In fact, through blockchain, critical IoT data may be trusted, i.e., considered valid for any subsequent processing. A simple formal model named the Mirror Model is proposed to connect IoT data organized in traditional models to assets of trust in a blockchain. The Mirror Model sets some formal conditions to produce trusted data that remain trusted over time. A possible practical implementation of an application programming interface (API) is proposed, which keeps the data and the trust model in synch. Finally, it is noted that the Mirror Model enforces a top-down approach from reality to implementation instead of going the opposite way as it is now the practice when referring to blockchain and the IoT

    Exact Time: the First Scientific Application of Radiocommunications

    Get PDF
    Marconi’s first experiment of signal transmission by means of Hertzian waves was carried out in 1895. In the following years, wireless telegraphy progressed steadily and worldwide efforts were made to exploit the potential offered by new technologies. In those years Guido Alfani, a young Florentine Piarist teacher of promise in Seismology, joined the Ximeniano Observatory in Florence where he found the ideal environment for his experiments and his insights. He understood the importance of having the exact time in Seismology, to temporally characterize the telluric movements and therefore accurately characterize them. In 1910 when the Paris radio station located at the Tour Eiffel began regular broadcasts of exact time, he laid down the issue of its reception. As far as pendulums and chronometers were concerned, no doubt his expertise as seismologist was significant, while problems arose when it came to the radio station, due to the novelty of such situation. For this reason he arranged contacts and managed to set the first Italian radio station to be used in a weather station. Thus, on the night of March 16-17, 1912, he received for the first time the time signal for a particular scientific application. He wrote to Marconi and in 1912 Marconi expressed words of great appreciation and encouragement for such work. Father Guido Alfani’s radio station is certainly the first one applied in Seismology and among the first radios made in Italy. It is an extremely important application which demonstrated that the new technique could provide solutions in different situations

    Accurate Despeckling and Estimation of Polarimetric Features by Means of a Spatial Decorrelation of the Noise in Complex PolSAR Data

    Get PDF
    In this work, we extended a procedure for the spatial decorrelation of fully-developed speckle, originally developed for single-polarization SAR data, to fully-polarimetric SAR data. The spatial correlation of the noise depends on the tapering window in the Fourier domain used by the SAR processor to avoid defocusing of targets caused by Gibbs effects. Since each polarimetric channel is focused independently of the others, the noise-whitening procedure can be performed applying the decorrelation stage to each channel separately. Equivalently, the noise-whitening stage is applied to each element of the scattering matrix before any multilooking operation, either coherent or not, is performed. In order to evaluate the impact of a spatial decorrelation of the noise on the performance of polarimetric despeckling filters, we make use of simulated PolSAR data, having user-defined polarimetric features. We optionally introduce a spatial correlation of the noise in the simulated complex data by means of a 2D separable Hamming window in the Fourier domain. Then, we remove such a correlation by using the whitening procedure and compare the accuracy of both despeckling and polarimetric features estimation for the three following cases: uncorrelated, correlated, and decorrelated images. Simulation results showed a steady improvement of performance scores, most notably the equivalent number of looks (ENL), which increased after decorrelation and closely attained the value of the uncorrelated case. Besides ENL, the benefits of the noise decorrelation hold also for polarimetric features, whose estimation accuracy is diminished by the correlation. Also, the trends of simulations were confirmed by qualitative results of experiments carried out on a true Radarsat-2 image

    Designing and developing a mobile application for indoor real-time positioning and navigation in healthcare facilities

    Get PDF
    Navigation portable applications have largely grown during the last years. However, the majority of them works just for outdoor positioning and routing, due to their architecture based upon Global Positioning System signals. Real-Time Positioning System intended to provide position estimation inside buildings is known as Indoor Positioning System (IPS)
    corecore